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Abstract

We spend an enormous amount of resources actively investing in financial markets, a cost which
has increased dramatically over the past few decades. Using historical data from US equity markets,
I document the connection between trading efficiency, market activity, and the information content
of asset prices. These relationships are predicted by a stylized model, where the increasing efficiency
of financial transactions leads to more—not less—spending on financial activity. This effect grows
stronger as the investment horizon contracts. To identify the importance of this proposed efficiency
explanation, I use the natural experiment that occurred when the SEC implemented Rule 19-b
in May of 1975, finding strong evidence that transaction efficiency is an important driver of the
modern increase in the cost of capital markets.

JEL classification: E44, G2, G12



1 Introduction

Investors spend a great deal of time and money speculating on financial valuations or hiring

others to trade on their behalf. While criticizing speculation is always fashionable, the scale of the

recent increase in resources spent on capital markets has many people concerned that we are wasting

talent and resources. There seems to be little consensus among financial economists regarding the

value of this speculative activity; however, it is easy to observe the increase in quantity. Historically,

the share of national income spent on financial market activity remained relatively stable until

the mid-1970s, when the financial sector began to grow much more rapidly than the aggregate

US economy. Before rushing to judge whether we now spend too much, or too little, on active

investing, we need theory and evidence that promise to explain the root cause of this growth and

the resulting effect on asset prices.

In this paper, I document how the sharp decline in the cost of financial transactions facilitated

the modern increase in financial activity. To clarify the forces at work, I present a stylized model

of an economy with a financial sector that allows investors to trade ownership claims on a risky

investment. The supply of investment responds to asset prices, and investor demand drives costly

financial activity. Investors decide how much of their resources to employ researching the future

prospects of the uncertain outcome, and market transaction costs affect the quantity and time

horizon of informed speculation. We see the surprising result that the financial sector consumes

more resources through spending on active investing as it operates more efficiently. As dynamic

trading strategies become feasible, the model suggests that the information content of asset prices

increases, especially over short-horizons.

Historical data on US market activity and asset prices confirm these predictions. The most

significant decrease in transaction costs occurred in 1975, when on May Day the SEC demanded that

stock exchanges end the practice of forcing a fixed commission schedule on all equity transactions.

In response to broker competition, the average cost of institutional trading plummeted to about

half of previous levels.1 This event is significant not only in the historical time series, but it also

provides a natural setting for identifying the causal mechanism. This regulatory change leads to

1US Securities and Exchange Commission, Directorate of Economic and Policy Research. Staff Report on the
Securities Industry in 1978 (July 26, 1979)
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a surge in capital market spending, trading, and compensation, with an impact that predictably

varies across investment characteristics and time horizons.

The efficiency of modern financial markets enables dynamic trading strategies and encourages

investors to spend more resources on research and trading, but increased efficiency does not neces-

sarily align the incentives of private speculators toward activities with the greatest social benefit.

Returning again to the stylized model shows that increases in the efficiency of financial market

operations may lead to less efficient economic outcomes.

1.1 Spending on Capital Market Activity

Consider how much the United States spends on capital market activities each year as a share

of total national production. Figure 1 shows the cost of capital markets as a percentage of the

GDP of the US private sector, where capital market spending consists of the profits and employee

compensation tabulated using the gross value added measures reported by United States Bureau

of Economic Analysis (BEA).2 The cost of capital markets is remarkably stable for approximately

half a century. Beginning with a cost of 0.27% of GDP in 1920 to a cost of 0.35% in 1970, spending

stays fairly close to its average of 0.32% with the exception of a moderate dip around World War

II. Then, a little before 1980, we notice a dramatic surge in the cost of capital markets to the point

where capital markets now consume two percent of annual spending.

Philippon (2012) lays out the scope of the historical challenge as he tabulates the costs and

quantities of various financial activities over the past 130 years in the United States. In his analysis,

it appears that the unit cost of financial intermediation has remained relatively stable over time

despite advancements in technology. He notes a puzzling increase in the cost of financial activity

over the past 30 years that he cannot explain with a corresponding increase in the quantity or

quality of financial services.

With a particular focus on this modern period, Greenwood and Scharfstein (2012) attribute

the modern growth of the financial sector as a whole to two specific components: an increase in

active investing and an expansion in credit markets. To contrast these two culprits, I allocate the

corresponding financial activities from the national industry accounts data, as shown in Table 1.

The resources consumed in credit and banking activities grew significantly over the past century

2A complete description of the underlying data will be available in an online appendix.
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but follow a distinct pattern from the resources spent investing in financial markets. The upper

plot in Figure 2 shows both activities consumed a growing fraction of GDP, but the cost of banking

and credit expanded at steady consistent pace since World War II while the surge in trading and

investing seems to be a more recent phenomenon. Unlike the capital markets sector, the lower plot

of Figure 2 shows the historical compensation of employees in the banking and credit sector differs

only slightly from the private sector average and increases only moderately in recent decades.

1.2 Theories of financial investment distortions

Dissatisfaction with the quantity of talent and resources consumed by financial markets seems

to peak during economic downturns. Amidst the Great Depression, Keynes criticized American

financial markets, arguing, ”when the capital development of a country becomes the by-product of

the activities of a casino, the job is likely to be ill-done.”3 On the other hand, the broad impact

of financial crises could also suggest we need a large and highly compensated financial sector to

replace animal spirits with dispassionate analysts.

Certainly, there is a need to understand the circumstances and incentives that pull resources

toward financial markets. What gives rise to a distorted financial sector? Economic research

offers three explanations for outsized financial activity: irrational investors do not know they trade

too much, rational investors cannot help trading too much, or perhaps the industry is rife with

rent-seeking.

Financial markets seem to be amazingly adroit at exploiting irrational beliefs and behaviors.

Fanciful trading or the decision to pay exorbitant fees to popular investment managers may funnel

unnecessary fees into finance and have other negative consequences (De Long, Shleifer, Summers

and Waldmann, 1989).

In a model where market participants are assumed to be rational, they may still spend too much

on active investment because inference is difficult (Pástor and Stambaugh, 2010) or out of a desire

to avoid being the greater fool when negotiating transactions. Glode, Green and Lowery (2012)

present this situation as an arms race externality for financial expertise. The model presented by

Bolton, Santos and Scheinkman (2011) has a similar mechanism; opaque markets attract talent

3Keynes, John Maynard, The General Theory of Employment, Interest and Money (London: Macmillan, 1936),
page 159.
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and more informed valuations lure the best investments away from public exchanges.

These explanations capture important aspects of financial markets, but neither seems uniquely

modern. If traders are foolish now, they were foolish before. Shrewd traders will always prefer to

be better informed than their counterparty. We are forced to ask: what changed?

Philippon and Reshef (2013) point toward the rent-seeking channel, and propose the growth

in compensation is a result of deregulation. The active government oversight intended to curb

the worst excesses in the financial markets of the 1920s was gradually relaxed 50 years later, and

Philippon and Reshef propose rents lured talent from more productive endeavors (Murphy, Shleifer

and Vishny, 1991).

Supporting this view, Bai, Philippon and Savov (2012) suggest modern asset prices show no

increase in their information content over the past 50 years. They suggest the increase in financial

spending may result from rent extraction, suggesting the growth in active investment has had little

effect on asset prices.

1.3 Understanding the causes and consequences of the cost of capital markets

With so much highly compensated talent flowing into investment management, it is hard to

believe that asset prices are no more informative in the modern information age than they were

in the bygone era when investors in top hats exchanged small pieces of paper. As an alternative

explanation for the root cause of the modern growth of capital markets, I propose technological

efficiency. The decreasing cost of transacting makes dynamic trading strategies feasible and draws

talent and technology toward acquiring faster paced information. Confirming the results of Bai

et al. (2012), I find only very weak evidence that modern asset prices capture more long-horizon

information; however, I find strong evidence of an increase in active trading and information content

at horizons of less than one year.

To help frame the empirical findings, I present a stylized model illustrating the role of trading

horizons in costly capital markets. The key comparative static will measure the effect of increases in

trading efficiency. The model predicts that as the cost of financial activity decreases, total spending

in the financial sector actually increases, especially for short-horizon speculation.

This explanation has a large degree of empirical success in explaining aggregate spending on

capital markets over time, particularly in regard to aggregate spending on active investing (French,
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2008). More efficient transaction costs lead to higher quantities of informed trading, providing an

underlying explanation for Greenwood and Scharfstein’s observation that the observed growth of

modern finance coincides with a growth in actively investing. The events of May 1975 highlight

the significance of this mechanism, as the SEC instituted rule 19b and replaced the high trading

commissions enforced by stock exchange members with competitive transaction rates. Using this

event and information from historical fee schedules, we observe how the operational efficiency of

capital markets affects the financial industry and market prices.

This paper provides new evidence on the changes that caused and accompanied the modern

growth in the cost of capital markets. Linking these findings to economic theory clarifies the

underlying incentives and opens the door to the broader question of whether the returns to finance

are worth the cost.

2 A Stylized Model of Capital Markets

In this section, I present a stylized model of capital markets where the supply of the risky

investment responds to asset prices and where the financial market is costly to operate. I will show

how changes in the cost of transacting affect the quantity of resources spent on finance and affect

the characteristics of asset prices.

To better understand the role financial markets play, consider an illustrative, general equilib-

rium framework where investors spend resources in acquiring information and engaging in costly

transactions. In the spirit of the Q-theory (Brainard and Tobin, 1977), the supply of investment will

respond to the market price, so the information in asset prices plays a key role in capital allocation.

Ultimately, we want to observe how changes in the cost of transacting affects the resources spent in

capital markets. Additionally, the model will distinguish between short-run and long-run behavior,

generating novel predictions relating the growth in capital market spending to asset prices which

will be confirmed in the data.

Unlike the opaque bilateral setting of Glode et al. (2012), all market prices in the model will be

publicly observed, which has historically been true for equity markets and is becoming increasingly

common across asset classes. The setup more closely resembles the endogenous information setting

of Grossman and Stiglitz (1980), adding the salient features necessary to model a costly financial
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market and multiple time horizons.

The key comparative statics will be the impact of an exogenous change of transaction costs on

total capital market spending and the information content of asset prices, noting the differential

impact by trading horizon. I briefly mention the welfare implications in section 5.

2.1 The Setting

The supply of risky investment

Consider a risky investment traded publicly over a T periods (t ∈ [1, T ]) prior to yielding an

uncertain payout X consumer in period T + 1, where the uncertain component of X is

X − E [X] =
T∑
t=1

θt + ε. (1)

Each of the component random variables are independent, mean-zero, and normally distributed

with variances σ2
θ and σ2

ε . The full, random component
∑
θt becomes public knowledge in period

T + 1. However, market participants can spend resources to discover the information in period 0,

and they will be termed long-horizon investors. Alternately, short-horizon investors may spend a

smaller amount of resources to discover each piece of short horizon information (θt) in period t.

The random component ε cannot be observed prior to period T + 1.

The quantity of the risky investment is responsive to investment demand, allowing the quantity

of shares in one period, Qt, to increase or decrease with the market price, Pt. For simplicity, we’ll

model this as a linear supply curve, with slope parameter b > 0. The change in investment supply

will be

Qt+1 −Qt = b (Pt − Pt−1) . (2)

where the initial price is assumed to be the unconditional expectation, P0 = E0 [P1]. By construc-

tion, the supply of investment is fixed in the short-run (contemporaneous with the trading period)

and responds to financial market prices over longer horizons (the next period).
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Investors and financial markets

The agents will be modeled by a continuum of identical investors. Wealth can be transferred

across periods at an interest rate of zero and is consumed in the final period. Each investor is

endowed with w0 units of wealth (measured in units of final consumption) and a share, q0, of the

risky investment. By construction, the total initial quantity of investment is Q0 =
∫
i∈[0,1] q0,idi.

Individuals can choose whether they want to acquire information and actively speculate based

on the difference between their valuation and the observed market price. To learn the full value

of
∑
θt during the first trading period requires paying kL, whereas short-horizon traders who only

learn each component θt at time t pay kS ≤ kL. Alternately, investors may choose to infer their

valuations from the public market price. Since their valuations will not differ from the market

price, they will not actively trade and I’ll refer to these traders as passive, though they might make

trades driven by changes in their uncertainty.

Each individual seeks to maximize expected CARA utility of final consumption. For conve-

nience, we’ll denote the consumption of investor i as their final wealth, wi, with associated expected

utility E[− exp {−awi}] for absolute risk aversion parameter a.

Investors must commit whether to spend resources on information in period t = 0 before any

trading happens. In subsequent periods prior to the final outcome, investors may choose to trade

their holdings of the risky asset at the prevailing market price. The transaction costs associated

with capital markets are passed directly through to investors. For analytical convenience, we’ll

assume they take a quadratic form so that the trading from a prior holding of qi,t−1 shares in

period t− 1 to qi,t during the trading in period t will result in a transaction cost of c
2 (qt − qt−1)2.

We can describe the evolution of investor wealth as

wi,t+1 = wi,t + qi,t (Pt+1 − Pt)−
c

2
(qi,t+1 − qi,t)2 (3)

where agents are identically endowed with w0 consumption and q0 shares of the risky investment.

In the final period, the price of the risky investment will simply be the outcome, i.e. PT+1 = X.
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Portfolio choice

The linear-CARA-normal framework allows the expected utility from the perspective of in-

vestor i in trading period t to be calculated as

Ei,t [− exp {−awi}] = − exp

{
−aEi,t [wi] +

a2

2
Vari,t [wi]

}
. (4)

Through monotonic transformations, the investor can maximize the certainty-equivalent, which

takes the mean-variance form, Ei,t [wi]− a
2Vari,t [wi]. The concavity of the problem suggests we can

find the optimal portfolio in each period, q∗i,t, at the point where the first order condition holds,

∂
∂qi,t

Ei,t [wi,3] = a
2

∂
∂qi,t

Vari,t [wi,3].

To motivate the optimal portfolio rules, we can work backwards from the final trading period.

The optimal portfolio q∗i,T in last trading period that maximizes the utility of consumption in the

subsequent period will have the associated first order condition

q∗i,T =
Ei,T [X − PT ] + cqi,T−1

aVari,T [X] + c
. (5)

This is the classic myopic portfolio rule with a transaction cost adjustment. In the numerator, we

see the optimal portfolio increases linearly with the expected return, Ei,T [X − PT ]. The second

term in the numerator shows how much transaction costs discourage trading by anchoring the

portfolio at the initial position, qi,T−1. The magnitude of the transaction costs, c, determines the

extent to which this affects the optimal portfolio.

In solving the model, I will show how the anchoring feature of transaction costs results in

optimal portfolio rules that are a weighted average of their myopic, one-period expected return and

the returns offered in future periods.

2.2 Equilibrium

In this setting, investors can be grouped into three types based on their information sets. The

mass of agents of type j are those who pay kj for their investment information will be measured as

the quantity λj ∈ [0, 1].
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Definition In a rational expectations equilibrium,

(a) markets will clear

(b) investors will choose to spend resources on information to maximize ex ante utility, leading

to an allocation {λL, λS} and where λN = 1− λL − λS is the fraction of individuals who will

only infer information from market prices

(c) investors of each type have an optimal demand function qi,t (Pt) for the risky asset conditional

on the market price, which will be constructed from their rational beliefs about random

variables (θt and νt) conditional on the observed price.

Market clearing

It will be useful to explicitly define market clearing. Noisy supply shocks will add uncertainty

so that the market price does not perfectly reveal all information. Specifically, the total quantity

of investment supply will equal investment demand,

Qt =
∑
i

λiqi,t +
νt

aσ2
ε + c

, (6)

comprising the sum of the individual demands (qi,t) times the mass of the investor type (λi) plus the

scaled demand shock νt ∼ N
(
σ2
ν

)
. The values in the denominator scale the shock by variance and

transaction costs. In this sense, the noise can be interpreted in the same way as the demands of an

informed investor, as can be seen from demand function (5), but obviously the shock is unrelated

to the actual final payout of the investment.

Intuition

To build the intuition behind this model and its equilibrium, consider Figure 3. For this

particular illustration, this will assume just one trading period (T = 1) and there is no distinction

between long-horizon and short-horizon informed investors, though the paper will generally consider

T > 1 in order to highlight the importance of time horizon. The left panel plots the fraction of

informed speculators along the horizontal axis, ranging from 0 to 1. The vertical axis measures
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expected utility for both the informed speculators and the expected utility for the uninformed,

passive investors. When there are no informed speculators, the information advantage is obvious

as the expected utility for informed active investors is significantly higher than that of the passive

investors who observe only the market price. As the fraction of the informed investors increases, the

difference between the two expected utilities decreases. This is the general case, and the intuition

extends to the multiple period setting; as the market price becomes more informative the relative

advantage of paying for the information decreases. With these parameters, the equilibrium point

of indifference between acquiring the costly information occurs at the point where approximately

1
4 of the investors acquire the costly information. To the right of the equilibrium point, the trading

profits resulting from learning more about the risky outcome θ are not worth the resources it could

cost (k).

On the right panel, the horizontal axis continues to measure the fraction of informed specu-

lators, and on the vertical axis we see the equilibrium price. In the case of no informed investors,

the variation in price is entirely due to the supply shocks ν. As the fraction of informed traders

increases, we see two effects. The average price increases as investors are willing to commit more

capital to investment because there is less uncertainty. Additionally, the variance of the market

prices increases. This is because the price now also contains information about the investment

prospects. Not surprisingly, the information content of asset prices levels of around the equilibrium

point, further evidence that little additional value is gained acquiring information that is already

largely in the market price.

Proposition 1 (Equilibria). There exist rational expectations equilibria under the assumed param-

eter restrictions (0 < kS < kL).

The proof for the one-period case (T = 1) should be clear from the discussion above. There will

be no long-horizon traders. Since the expected utilities are continuous in λ ∈ [0, 1], we simply need

to appeal to the intermediate value theorem for existence. The difference between the expected

utility of the informed and uninformed traders will nearly always be monotonically decreasing in

λ, which guarantees uniqueness.

The same intermediate value approach guarantees a unique solution in the case of multiple

periods (T > 2) in the case where one or more type is always inferior and has optimal weight
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zero. The existence of the multiple horizon solution when there is a positive mass of each of the

three types can be motivated by working backwards from the final period. In the final period,

informed traders face a situation identical to the one-period model. In prior periods, the relative

advantage to the long-horizon information is decreasing in λL. The mass of investors in λS will be

uninformed about the information θt+k (for k > 1), and like the uninformed investors, can infer

more information as λL increases. As long as there are positive quantities of each investor type,

the marginal effect of more traders will follow the same relative rank impact on ex ante utility,

guaranteeing a unique solution.

2.3 Characterizing a multiple horizon solution (T = 2)

To characterize the analytical differences between long-horizon and short-horizon speculation,

I will more fully characterize the solution for T = 2. In this setting, the outcome will be a long-run

event in the first period and a short-run event in the second period, which immediately precedes

the investment outcome. After this short-horizon trading is complete, investor i will consume

wi = w0 + q0P1 + qi,1 (P2 − P1) + qi,2 (X − P2)− c

2

(
(qi,1 − q0)2 + (qi,2 − qi,1)2

)
− ki. (7)

Assuming linearity and the resulting expectations

To calculate the investor demand functions, we need to know their expectations, which will be

affected by the information they perceive from the market prices they observe. I will assert and

then prove that the market prices can be expressed as linear functions of the unknown variables,

P1 = P̄1 + β1θ1 + β2θ2 + βν1ν1 (8)

and

P2 = P̄2 + βP
(
P1 − P̄

)
+ β3θ1 + β4θ2 + βν2ν2. (9)

The unknown coefficients are derived in the appendix, thus confirming the assumed linear functional

form.

Additionally, to help with the notation and intuition, we note that the beliefs of uninformed
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and short-run traders hold about X from observing the market price in period 1 will be affected

by the variation in price. We can express these expectations as

ES,1 [X] = X̄ + ρS,1YS,1 (10)

where

YS,1 = θ2 +
βν1
β2
ν1 (11)

∝
(
P1 − P̄1 − β1θ1

)
(12)

and so that ρ ∈ [0, 1] is a simple function of the assumed parameters

ρ =
σ2
θ

σ2
θ +

(
βν1,1
βθ,1

)2
σ2
ν

.

The investors who have spent no resources on information simply take valuations from their devi-

ation from the market price (
EN,1 [X]− X̄

)
∝
(
P1 − P̄

)
(13)

Portfolio optimization in period 2

The investors will be categorized by the trading period in which they receive information about

θ: in the long-horizon (L), short-horizon (S) and not at all (N).

For each of the three investor types (L, S, and N), we can express their optimal portfolio

in terms of their prior position and their current expectations Ei,2 [X] and Vari,2 [X]. The long-

run and short-run speculators will both know θ1 and θ2 in period 2 so EL,2 [X] =ES,2 [X]. The

associated variance will be VarL,2 [X] =VarS,2 [X] = σ2
ε . From (5) we can conclude that the optimal

portfolio for these two types of investors will be

q∗L,2 =

(
X̄ + θ1 + θ2 − P2

)
+ cq∗L,1

aσ2
ε + c

(14)
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and

q∗S,2 =

(
X̄ + θ1 + θ2 − P2

)
+ cq∗S,1

aσ2
ε + c

(15)

The optimal portfolio for the investors who purchase no information

q∗N,2 =
EN,2 [X − P2] + cq∗N,1

aVarN,2 [X] + c
(16)

depends on the expectations, En,2 [θ] and Varn,2 [θ], which will be derived later.

Portfolio optimization in period 1

When investing for the long-run (in period 1), investors choose their allocation aware of their

optimal short-run portfolio rules in equations (14 - 16). Those short-run rules show that each

portfolio allocation is linearly related to the expected return (Ei [X − P2]) and the prior portfolio

allocation (qi,1).

The form of the period 1 demand function for long-horizon investors is similar to that of the

other two investor types. It is derived by substituting the period 1 demand from equation (14) into

equation (7) and taking the first order conditions to find the optimal portfolio

q∗L,1 =
(1− Γ) EL,1 [P2 − P1] + ΓEL,1 [X − P1] + cq0

Ω + c

(
1 +

(
aσ2
ε

aσ2
ε+c

)2
) (17)

where the tilt toward the long-run return is

Γ =
c

aσ2
ε + c︸ ︷︷ ︸

return next period

+ a

(
2aσ2

ε + c
)
β2
ν2σ

2
νa

2σ4
ε

(aσ2
ε + c)4︸ ︷︷ ︸

prefer to avoid adverse ν2

and the variance

Ω =

(
c

aσ2
ε + c

)2

σ2
ε︸ ︷︷ ︸

variance of X

+

(
aσ2

ε

aσ2
ε + c

)4

β2
ν2,2σ

2
ν︸ ︷︷ ︸

variance in P2

.

To develop some intuition for this long-horizon portfolio rule in equation (17), consider the three

terms in the numerator. As before, there is a weight pulling the optimal portfolio toward the

initial position, q0 as a result of transaction costs. The other two terms are a weighted average of
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the myopic expected return, EL,1 [P2 − P1] and the long-run expected return, EL,1 [X − P1], with

respective weights (1− Γ) and Γ.

The weight Γ that the investor tilts toward the long-horizon return will always be weakly

positive, Γ ∈ [0, 1), and its magnitude will increase with transaction costs. The relationship with

transaction costs arises from the investor recognizing positions taken today will persist into the

future due to the anchoring effect of transaction costs. Additionally, there is some uncertainty in

the price next period, so investors have an incentive to lock in P1 now rather than pay an uncertain

P2.

The demand functions for the short-run and uninformed investors take an identical form, with

slightly different values for Γ and Ω. These can be found in the appendix.

Market Clearing and Investor expectations

The investors will form expectations about investment prospects (X) and the effect of the noise

shocks (ν1 and ν2) from the market price. Intuitively, investor expectations of θ increase in the

market price, but larger noise shocks dampens this relationship. Complete expressions for investor

expectations can be found in the appendix, and I verify the assumed linear relationship between

prices and the unknown variables as suggested in equations (8) and (9).

2.4 The impact of more efficient transactions

Let’s now turn to the question of what happens if the financial sector is more operationally

efficient and the cost of transacting decreases. I consider two key comparative statics: how does this

affect total active investment management (∂
∑
λi

∂c ) and how does this effect differ by investment

horizon (∂λs∂c versus ∂λl
∂c ).

Proposition 2 (More active management). As the cost of transacting decreases, total informed

trading increases,

∂
∑
λi

∂c
≤ 0

and this becomes a strict inequality if there is any interior solution (i.e. 0¡λj < 1 for some j).

The value gained from information lies in the ability capitalize on the information through

active trading. Clearly, in the limiting case, limc→∞ λ
∗
n → 1. For interior solutions, we must consider
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the marginal impact of transaction costs on the relative utility of informed and uninformed investors.

The unconditional expected utility of an informed speculator will be a decreasing, continuous

function of transaction costs. The unconditional expected utility of a passive investors will also

decrease–but much less rapidly. Hence, ∂
∑
λN

∂c ≥ 0. Since these functions are continuous, equality

will only hold in the corner solutions where marginal changes in expected utility have no effect on

the allocations of investor type.

Proposition 3 (Shorter investment horizons). Lower transaction costs have a greater effect on

short-horizon investors than long-horizon investors,

∂λS
∂c
≤ ∂λL

∂c

with strict inequality for interior solutions (i.e. λL ∈ (0, 1) and λS ∈ (0, 1)).

This result comes from the fact that the short-horizon investors’ optimal portfolio contains a

subset of the information of the long-horizon investor. So the desire to spread trading over a longer

horizon is offset by the fact that the short-horizon signal in period 1 (θ1) may be in the opposite

direction as the signal in period 2 (θ2). As a result, short-horizon traders are forced to trade more

for the same expected return.

In fact, in a model with many periods (T large), the short-horizon traders will find that the

independence of θt makes trading in the earliest periods costly relative to the weakness of their

accumulated signal. As the final horizon approaches, the short-horizon traders will be more inclined

to trade as their accumulated signal is stronger and less likely to suggest they need to unwind their

trades because of future information.

In contrast, the long-horizon traders are eager to trade on their information as early as possible,

but they submit to spreading their trading across later periods in their desire to minimize their

transaction costs. There are also information advantages to spreading out trades, since larger trades

move prices and allow other traders to freely infer the costly information, but the infinitesimal

traders do not absorb this externality.
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3 Explaining the Empirical Growth in Capital Market Spending

A key contribution of this paper is document the relationship between the efficiency of finan-

cial transactions and the growth of modern finance. As improvements in technology and market

organization make transactions less costly, we should expect to see the volume of transactions in-

crease. This simply follows from the economic Law of Demand. A more surprising result is that

as financial costs decrease, total spending on finance increases. This is fundamentally a statement

about elasticities.

In this section, I focus on establishing the relationship between financial efficiency and the

aggregate measures of financial spending and activity. I use timing to assert causality in the

Granger sense, and using the (plausibly) exogenous historical break in May of 1975. The evidence

is statistically strong but open to the criticism that the changes in efficiency may be interrelated

with contemporaneous events. In section 4, I will use cross-sectional variation in the panel data to

establish even stronger results and focus more explicitly on measuring the information content and

investment horizon, two key features of the model.

3.1 A time series of transaction costs

With the possible exception of the very recent past, brokerage commissions were the primary

cost in trading equities (Berkowitz, Logue and Noser, 1988). They funded all the operations required

in financial market transactions. To test the efficiency explanation for the growth of capital markets,

I construct a historical time series that measures the representative cost of transacting. The measure

I propose splices two date ranges: 1927-1975 and 1975-2010.

Pre-1975: the NYSE fixed commission schedule

From its founding in 1792 up to 1975, the New York Stock Exchange (NYSE) enforced a

minimum commission schedule on all of its member firms. The smaller, regional exchanges mirrored

the commission schedule of the NYSE, and in the rare cases where they didn’t, they faced enormous

industry pressure to conform. The stated goal was to ”prevent competition amongst the members”

to protect their profits. Exchange members referenced the general fear of unfettered trading and

defended high trading costs by observing that ”a very low or competitive rate would also promote
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speculation.” 4

An example commission schedule, corresponding to the NYSE rates for 1956 is displayed in

Figure 5. We can see how the formula defining the commission rate is a function of the nominal

share price. Purchasing a round lot (100 shares) of a stock costing $30 per share, for example,

would have a commission of $15 +0.5 times $30. A round lot of a $60 stock would cost $35 +0.1

times $60.

To construct a time series of the average transaction cost prior to 1975 I collect the NYSE

commission schedules, including the NYSE annual fact books and the monthly S&P Stock Owners

Guide. Combining these commission schedules with trading volume and price data from CRSP,5 I

construct an annual series of the weighted average cost of trading.

May Day 1975

In the aftermath of the financial disasters surrounding the Great Depression, the Securities

Exchange Act of 1934 charged the Securities and Exchange Commission (SEC) with regulating and

approving changes to any enforced commission schedules. Over the following forty years, the NYSE

would periodically submit proposals to increase rates. A pattern emerged whereby the NYSE would

complain about the rising costs and shrinking profits of its members, propose an increase in the

commission schedule in order to maintain an appropriate level of profitability, and they would get

immediate approval from the SEC.

In 1968, however the SEC scrutinized the latest proposed increase with more skepticism. Reg-

ulators asked why the cost of transacting in the financial markets could not itself be the product

of a competitive response. The response from the exchange was emphatic: ”One does not move

the keystone of an industry which facilitates the raising of the bulk of new capital for this coun-

try...Negotiated rates would bring a degree of destructive competition.”6

Although the SEC continued to approve a series of regular increases, this initial dissatisfaction

was not placated. On January 23, 1975 the SEC adopted rule 19b, requiring all stock exchanges

to end the practice of the fixed commission schedule and allow members to set rates competitively.

4Report of the Committee Appointed Pursuant to House Resolutions 429 and 504 to Investigate the Concentration
of Control of Money and Credit, H.R. REP. NO. 62-1593

5Center for Research in Security Prices. Graduate School of Business, The University of Chicago (2012), Used
with permission. All rights reserved.

6Richard Hack, NYSE president (August 19, 1968)
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This rule was to go in effect on May 1, 1975. Distressed brokers and the popular press referred to

the deadline as May Day.

As brokers competed for the first time on trading costs, there was a sharp drop in costs, es-

pecially for institutional investors. The SEC instituted a number of studies trying to measure the

impact of their rule. Only two weeks after the beginning of competitive rates, the SEC Commis-

sioner noted that they have seen sharp price cutting, in some instances to half or less of previously

prevailing rates.7 The SEC study of 1978 concluded that institutional trading costs had stabilized to

a level 52.9% below their fixed rate levels.8 Interestingly, the costs to individual traders decreased

only moderately, giving rise to price discrimination among investor types (Tinic and West, 1980).

Post-1975: NYSE member financial statements

To continue the time series measuring the cost of transacting in the modern period of negotiated

commissions post-1975, I collect commission revenues from the member financial statements of the

NYSE and divide them by trading volume to estimate the weighted average cost per share.

Figure 6 shows the composite time series from 1927 to 2010. We can see the significant

increase in the early 1930s followed by a relatively steady increase in costs for almost 50 years

until the sudden drop resulting from the events of May 1975. To ensure the aggregate time series

is a fair representation of aggregate transaction costs, I compare it to a number of independent

measures. These include: the survey results from Greenwich Associates, a consultancy that surveys

institutional investors regarding the costs they pay for their transactions; the SEC studies measuring

transaction costs in the wake of rule 19-b; and for historical purposes, the cost associated with

trading a $30 stock, holding the nominal share price constant through the duration of the fixed

commission schedule. Each of these measures corresponds relatively closely to the composite series

I created.

Since the post-1975 series imputes costs rather than calculating them directly, it is especially

useful to compare them with data published by Greenwich Associates, a firm that has been polling

institutional investors on their average commission costs since 1976. The time series of their survey

results is plotted in green triangles alongside my own estimates on Figure 6. The two series are

7Remarks by A. A. Sommer Jr. in a talk titled ”The New Breath of Competition” delivered at the Seminar on
the Analysis of Security Prices, University of Chicago, May 15, 1975.

8SEC Staff Report on the Securities Industry in 1978
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highly similar, except in the first few years of the sample where the commissions paid by institutions

are even lower than the computed average. This is consistent with historical reports that the trading

commissions charged to individuals did not drop immediately in response to the deregulation until

the advent of discount stock brokers around 1980.

Looking at the data prior to 1975, I plot the evolution of the cost of trading a $30 stock using the

orange squares. Historical patterns in share prices and trading volume cause the higher frequency

variation in my composite series, making it useful to compare against a series where the nominal

share price is held constant. Any changes can then be attributed to the imposed cost schedule

and not to endogenous investor behavior. Focusing on the cost of trading a $30 stock from 1928

to 1973, we see the round trip cost more than tripled, from 1.07% to 3.46% of the notional value.

Including the additional 1.7% for paying the typical $1/4 cost from the bid-ask spread, the total cost

of buying and selling exceeded 5% in 1975. It is important to note the economic importance of this

magnitude. To put this in perspective, the average stock response to an earnings announcement

is in the range of 4%9, so even if it were possible to know earnings announcements with certainty,

you would typically not be able to recover the cost of transacting. The costs were so high that only

large misvaluations could merit attention. A speculator would favor low frequency information,

with the hope that transaction costs might be amortized over a long horizon. Furthermore, any

dynamic trading strategy, such as a portfolio rebalancing rule or a derivative replication, would be

incredibly costly.

3.2 Time series analysis

We can expect the constructed time series of transaction costs to be negatively correlated with

trading volume, a relationship that should hold true in nearly any economic model. If the proposed

efficiency explanation for capital market growth plays a significant role, transaction costs should

also be negatively related to capital market spending. In particular, this increase should correspond

to active investment management and not just an increase in the operational costs associated with

higher trading volume. Lastly, the prediction of more informed speculation also suggests that

employees with higher skill and compensation enter the sector in response to a cheaper cost of

transacting.

9See, for example, Francis, Schipper and Vincent (2002).
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The series measuring the cost of capital markets continues to be the value added measure of

capital market industries relative to private GDP with annual data from 1927 to 2010. The series

measuring capital markets compensation relative to average US private compensation was also

previously described and plotted in Figure 1. I measure equity turnover by collecting all available

CRSP data on stock volume and shares outstanding for common equity of US firms. Additional

details behind the data sources and data construction can be found in the online data appendix.

Summary statistics and simple regression analysis

The summary statistics for these four time series are presented in Table 2. We can see that

the transaction cost, measured in basis points (hundredths of one percent), averages 71 basis points

over the full sample. The series ranges significantly from more than 150 bps near its peak to just

a few basis points in recent years. The fraction of GDP devoted to capital markets averages about

79 basis points over this time series, averaging about 30 basis points before 1975 and increasing

to about 200 basis points in recent years. The compensation for capital market employees has an

average that is approximately twice the US private sector average over the full sample, increasing

to almost 4 times average compensation in recent years. Equity turnover is about 56% a year on

average, suggesting an average holding period of approximately two years. While turnover was very

high in the late 1920s, it was consistently low for most of the 20th century and then rises again in

the recent past, with a current horizon of just a few months.

The correlations of the four series are displayed in the bottom panel of Table 2. As predicted,

transaction costs have a strong negative relationship with the size of capital market spending and

the volume of trade. While supporting the idea of a contemporaneous relationship, the slow-moving

nature of all four time series might cast doubt on the statistical significance.

We can see this more precisely in the simple regressions shown in Table 3, where the GDP

share of capital market (capmkt), the relative compensation ratio for capital markets (comp) and

the estimated US equity market turnover (turnover) are each regressed on the transaction cost

series (tcost). As an illustration of the strength of this predictive relationship, Figure 8 plots the

growth in the cost of capital markets (shown previously in Figure 1) against the predicted value

from the regression. While there is certainly some unexplained variation, the visual fit is striking.

Note that each of these series is highly persistent, as is observed in their plots, so it comes as no
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surprise that an augmented Dickey-Fuler test does not reject the possibility of a unit root. This

degree of persistence would discount the significance of their observed correlations.

Regression of first differences

To make a stronger case for this relationship and establish causality (in the Granger sense that

past transaction costs forecast growth in capital market activity), we can consider how the changes

in one series affects the other by taking first differences. With the high degree of persistence in

the raw time series, they may be susceptible to the type of spurious regression results that occur

with unit roots. The first differences could then reveal if the time series are truly related, and if

so, if one tends to forecast the other. Table 3 reports the results for regressions forecasting annual

changes in capital market spending, the capital market compensation ratio, and trading volume as

each is regressed on annual changes in transaction costs with up to 4 lags.

The predicted negative relationship remains. Interestingly, changes in transaction costs lead

changes in the other series by approximately 2 to 3 years. For example, in the first regression

of capital market spending on lagged changes in transaction costs we see negative coefficients for

every lag with the second lag being of the strongest magnitude. We can interpret this coefficient

as suggesting a one basis point decrease in the cost of transactions predicts that capital markets

will consume a 13 basis point higher share of private GDP two years in the future. The same one

basis point decrease in the cost of transacting would predict the average compensation of capital

markets professionals in three years to rise by an additional 0.18 times the compensation of the

average US employee. Looking at the effect on trading volume, this one basis point decrease in

transaction costs would suggest trading volume to be 9% higher in three years’ time.

This is actually what we might predict if innovations to transaction costs are unexpected. In

the context of the proposed model, investors commit to their type ex ante, so we would expect the

delayed response to correspond to the time it takes to acquire the talent and research necessary to

launch new dynamic strategies.

The statistical relationship seems compelling, although any claims about the importance of the

efficiency mechanism are certainly open to critiques of omitted variable bias. A number of important

regulatory and technological changes happened during the 1970’s. The coincident growth in capital

markets and decline in transaction costs could be coincidence, although it would be difficult to
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explain the strong predictive power of the transaction cost changes exhibited in Table 3. To

strengthen the identification of the true mechanism causing financial growth, we can look at the

cross-section of firms and focus on specific predictions around the events of May 1975.

4 Market Activity and Asset Prices in the Cross Section

Moving from broad statements about financial activity to the activity we observe for individual

firms provides a more refined measure of how much of the growth in active investing can be explained

by transaction efficiency. The model presented in section 2 had specific predictions regarding trading

activity and the information content of asset prices. As trading efficiency increases we expect to see

more trading volume and more informative asset prices. There should also be a differentially large

impact on the shorter investment horizons relative to longer horizons. Observing cross-sectional

variation in the prices and trading activity of individual firms over the past few decades will generate

micro-level support to add to the macro-level time series evidence presented in the previous section.

For increased confidence that we are isolating a key driving mechanism behind the growth of

active investing, we can use the events of May 1975 as Rule 19-b came in force. First, we expect that

the subsequent drop in transaction costs associated with competitive brokerage commissions should

lead to a subsequent increase in the trading and information content of US equities. Following a key

prediction of the model, we should expect this to be stronger for shorter horizons. Then, to better

identify the efficiency channel, we can use specific features of how the fixed commission schedule

affected the cross-section of firms until May 1975 to measure differential effects. This additional

level of control helps rule out competing explanations that might have occurred on or around 1975.

4.1 Connecting the panel data with the stylized model

In the stylized model of section 2, the information content of long-horizon prices can be mea-

sured through the regression coefficient from projecting the risky investment outcome (X − E[X])

on to the change in the long-horizon price (RL = P0 − P1), defining

βL =
Cov[X,RL]

Var[RL]
=

βθ,1σ
2
θ

Var[RL]
.
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Intuitively, the information content of long-horizon prices is positively related to the quantity of

long-horizon active investors.10

The information content of short-horizon prices can be similarly expressed by (RS = P1 − P2)

βS =
Cov[X,RS ]

Var[RS ]
=

βθ,2σ
2
θ

Var[RS ]
.

which increases with the sum of the long-horizon and the short-horizon active investors.

We can construct an analogous measure with empirical data on stock prices and earnings.

I define the ”long horizon” as the period stretching from two years prior to a firm’s earnings

announcement to 7 months prior to the earnings announcement, the ”short horizon” spanning 7

months prior to the earnings announcement to one month prior to the earnings announcement, and

the ”announcement period” spans from one month before to two months after the announcement.

The risky investment outcome will be defined as the scaled change in a firm’s quarterly earnings

(∆xt).

This motivates a corresponding empirical regression of the firm’s uncertain payout on the

returns over each horizon,

∆xt = β0 + βL × rL + βS × rS + βA × rA (18)

Each of the returns will be measured as the change in log-price, so if time t is measured in months

relative to the earnings announcement,

rL = ln(Pt−7)− ln(Pt−24)

rS = ln(Pt−1)− ln(Pt−3))

rA = ln(Pt+1)− ln(Pt−1)).

Similarly, the risky payout will be measured as a log return scaled by the price observed prior to

all the returns. If EPSt corresponds to the earnings-per-share reported on the announcement date,

10Formally, this can be stated as ∂Cov[X,RL]
∂λL

> 0, and also, βL
∂λL

> 0 given Var[RL] > βθ,1σ
2
θ .
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the risky payout in the panel regressions specified by (18) will be defined as

∆xt = ln

(
1 +

EPSt − EPSt−3

Pt−24

)
.

4.2 Description of panel data

For each year from 1960 to 2012, I construct a universe of firms by selecting the 1000 largest

firms by market capitalization, as measured by their CRSP-reported market cap on December 31st

of the prior year. For this set of firms, I collect historical weekly total returns, nominal share prices,

trading volume, and shares outstanding. Using the linked CRSP-Compustat data, I collect a panel

of their reported earnings per share and the date of the earnings announcement.

The announcements dates are not always available, particularly early in the sample, so I create

an additional supplemental series of earnings announcement data where I use historical announce-

ment patterns to estimate the date when not available. This has the advantage of increasing the

sample size, and the methodology for estimating historical announcement dates appears to be very

accurate when checked against firms for which the actual dates are known. Since the announcement

return period is defined to begin one month prior to the reported announcement, any imprecision

should have little effect on the results of the subsequent panel regressions.

Table 4 reports the summary statistics for the variables considered in the panel data regres-

sion. The earnings news measure (∆xt) for these large firms over the 45 year sample averages

approximately zero with a standard deviation of approximately 2%. The market price for the

firms in the sample appears surprisingly high, at about $104, but this is actually an artifact of

Berkshire-Hathaway’s inordinately large nominal share price. The median share price is $32 with

a standard deviation of $24. Dividing the trading volume recorded in CRSP for each quarter by

the shares outstanding, I obtain firm-level annualized turnover rates for each firm-quarter in the

panel. Over the full sample, annualized turnover averages 2.36, with a wide degree of variation

across firms. The return variables, rL, rS and rA, each correspond to a different horizon length, so

the magnitudes of their average returns and standard deviations are not directly comparable.

The lower panel of Table 4 reports the same summary statistics for the sub-sample correspond-

ing to the five years before May of 1975, the two years of observations that overlap with May 1975,
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and five years afterward. This subsample, and ones like it, will be used in the panel regressions

where the data window tightens around the events around the implementation of Rule 19-b.

4.3 Rolling panel regression

To generate a graphical measure of the changing information content of prices over time,

we can perform a rolling panel regression. I hold the window length constant at two years and

then estimate the panel regression corresponding to equation (18) with firm fixed effects. Figure 9

displays the rolling coefficient estimates as a scatterplot in the upper axis, where each estimated long

horizon coefficient, βL, corresponds to a white circle and each estimated short-horizon coefficient,

βS , correspond to a shaded circle. The lower axis reports the estimated root mean square error

(RMSE) and the R-squared coefficient of each regression.

The rising pattern in the information content of asset prices is clearly visible. While the

magnitude of these betas are roughly similar in the first 10 years of the sample, the predictive

power of the short-horizon prices increases much more rapidly than the long-horizon prices. In a

more careful subsequent regression estimating the trend in information content over time, I show

the increase in the long horizon coefficient, while positive, to be statistically difficult to distinguish

from a hypothesis of no change.

This is consistent with the results of Bai et al. (2012). They look at the information content

of prices at one to three years prior to earnings releases. This is what my results would consider

long-horizon information, and I find no compelling evidence that this information has improved

over time.

On the other hand, asset prices less than one year prior to earnings announcements show a

consistent increase in information content. Previewing my focus on the events of May 1975, this

figure already gives a strong visual indication that the strongest increases in information content

correspond to this change as active investing increased dramatically.

While this rolling analysis is instructive, the underlying investment setting may not be fully

comparable as the sample rolls across time. The information gathering problem may be differ-

ent from one decade to the next, and there may be significant changes in the price-to-earnings

relationship that would affect the magnitude of the coefficients.

With that in mind, it is interesting to look at the bottom axis of Figure 9 and note how
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both the explained variation (R2) and the unexplained variation (RMSE) are increasing in the late

1970’s and, to a lesser extent, over the full historical sample. This suggests that the raw difficulty

of forecasting earnings increased, but so did the fraction of variation that prices could explain.

4.4 Panel regression with trend

To directly estimate the pattern of change in the information contained in asset prices over

the full sample, I run a full panel regression, interacting the return variables with the time trend.

The variable, trend is measured in years, and the coefficient on rL × trend can be interpreted

as the annual change in the regression coefficient measuring long-horizon information content.

Corresponding interaction terms are used for the short-horizon and announcement return.

Table 5 reports the results of the base panel regressions suggested in equation (18) as well

as a version with these time trend interactions. The reported standard errors are estimated using

industry clustering, where I use the two digit SIC code as the definition for industry throughout.

The regression reported in the first column of Table 5 reports the results of the base regression

using firm fixed effects, considering variation within firms. The second regression specification uses

industry and quarter fixed effects to isolate the impact of variation among similar firms in the same

time period. The results of each specification are very similar. The strong statistical significance

of these regression coefficients should not be too surprising; changes in asset prices correspond to

present and future changes in earnings. On the other hand, the coefficient on the long-horizon

return is not particularly strong in the first specification with firm fixed effects, and disappears

entirely in the second specification.

The third specification is the primary one of interest. It shows the gradual change in these

coefficients over time. The interaction term between the short horizon return and the time trend

is statistically significant at the 1% level. In contrast the long horizon return shows little evidence

of increasing informativeness over time. Of note, the three-month return around the earnings

announcement actually shows a decreasing relationship in predicting the reported earnings. The

fact that we observe opposite effects on the short-horizon and announcement returns may indicate

a substitution of information being pulled into earlier asset prices.
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4.5 The post-1975 effect

Over such a long sample, any number of underlying parameters could be changing. The types

of firms today are certainly very different than those of the 1960s. There could very well be

differences in the difficulty of predicting their future profitability, there can be differences across

industries, and there could be differences in their accounting conventions. To be sure that we are

truly measuring changes in asset price information and not these other confounding features, we

can focus on the change in transaction efficiency associated with the implementation of Rule 19-b

in May of 1975 and tighten the estimation window around this period.

I estimate panel regressions using the same framework as before, but I now interact the returns

with a dummy variable, post75, that equals one for observations where all corresponding variables

are observed after the advent of competitive commissions (i.e. after May of 1977). Interacting

with this dummy variables tests for a discontinuity in the parameter estimates when crossing this

boundary. This regression is reported in Table 6.

There are four regression specifications in the columns of the table, with each one representing

a smaller window around 1975. The first specification estimates the panel regression over the full

sample, comparing pre-1975 to post-1975 data using the observations from 1966 to 2010. Both long

horizon and short horizon prices show dramatic increases in their information content, with their

coefficients increasing by a factor of four. However, only the short horizon variables show statistical

significance.

The three successive regression specifications with tighter and tighter sample windows increase

the standard errors in the coefficient estimates but decrease the concern that other factors unrelated

to efficiency and information are driving this result. Looking at the coefficient estimates, the

post-1975 effect on short horizon price information remains roughly equal for each time window

considered. The effect on long horizon information is always weaker than short horizon and difficult

to distinguish from zero.

4.6 Identification using cross-sectional cost differentials

So far the panel analysis has only used the dimension of time to associate active trading and

information with transaction efficiency. The strongest evidence for this channel will come from the
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differential impact across stocks.

The NYSE fixed commission schedule was always a function of the nominal share price. As-

suming the nominal share price is a historical artifact, this creates variation across stocks that is

plausibly unrelated to any economic characteristics. The commission schedule was set as a decreas-

ing function of nominal share price, so stocks with lower prices were much more expensive to trade

than those with higher share prices. This is illustrated in Figure 7, where the round trip cost from

the commission schedule effective in May of 1974 is plotted in red on top of a histogram of the

frequency distribution of the stock prices at the time.11

There are various ways to exploit this variation. The most simplistic is to use a difference in

differences approach. I form three categories: lowP for stocks with a nominal share price less than

$15, midP for stocks whose nominal share price is between $15 and $30, and highP for stocks whose

nominal share price is above $30. We can then look at the differential impact across categories

before and after 1975.

Table 7 reports the results of this approach, where the coefficients of interest are the magnitudes

of the product: rL×lowP×post75, rL×midP×post75, rL×highP×post75, rS×highP×post75, and

so forth. The prediction we are testing is whether these coefficients are positive (indicating more

information post-1975) and monotonically decreasing in nominal price (indicating a differential

impact across firms according to the relative change in transaction efficiency). As in the previous

table, each regression specification corresponds to tighter windows around 1975.

The results for short-horizon prices are just as predicted. All prices appear more informative,

but the impact on securities with the largest change in transaction costs (lowP ) is an order of

magnitude higher than stocks where the change was more moderate. As hoped, the relationship is

monotonic across the three categories and roughly consistent as the time window shrinks.

In the first regression specification, which uses the longest window, there is some evidence of

an increase in information content of long-horizon prices, and the cross-sectional relationship with

respect to nominal share price is monotonically decreasing. However, the statistical significance is

low, and result disappears entirely in the specifications with shorter sampling windows.

11A surprising fact about stock prices is that the distribution of their nominal price per share has been remarkably
consistent over time despite inflation and secular changes in investor and investment characteristics. This has been
discussed by Weld, Michaely, Thaler and Benartzi (2009).
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5 Implications and Conclusions

The empirical analysis shows great success in explaining the modern growth in the cost of

capital markets and in looking at its effect on asset prices. However, looking at the information in

asset prices only opens the door to broader questions about the social benefits of these changes.

In the simple model presented here, the benefits of active trading largely come from two sources:

the noise shocks and the efficient allocation of capital. However, the improved capital allocation

is a broadly shared positive externality, not something the active investors accrue directly. The

immediate trading profits come at the expense of a counterparty. To what extent will these noise

traders be happy in funding trading profits?

5.1 Social welfare

The bigger normative question everyone wants to answer is: are we spending too much on

finance? Taking the empirical results back to the modeling framework, we easily see two important

welfare effects. First, investors fight over their slice of the pie, leading to what Stein (1987) terms

”welfare-reducing speculation.” These expenses are wasteful and would suggest too much spending

in financial markets. Second, more informed asset prices increase the size of the pie, but the

informed investors capture only a small portion of this benefit. All of us who use public market

prices are free-riders, and this positive externality suggests we aren’t spending nearly enough on

informed speculation.

The welfare-reducing speculation can be clearly seen in the simple model where the supply of

the risky investment is perfectly inelastic, as it would be for very short horizons. Using the same

model parameters that illustrated the equilibrium in section 2, I add a dotted line to the left panel

of Figure 10 to show the social welfare (calculated as average expected utility) in the same plot as

the expected utility of the active and passive investors. Since the resources spent on information

have no effect on total output, social welfare is maximized with practically no informed trading, a

solution clearly less than the competitive equilibrium.

It is this type of intuition that drives the suggestions of Philippon (2010), who suggests we

may have too few engineers relative to financiers, or Bolton et al. (2011) who similarly contrasts

an overabundance of financiers relative to entrepreneurs.
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In contrast, the free-riding effect is illustrated in the case of an elastic investment supply,

as we would expect for long horizons. The left panel of Figure 11 shows the equilibrium for

the same parameters used in the previously discussed example, except the supply of investment

will now respond to more accurate asset prices. As you can see, the socially optimal level of

informed investment would allocate nearly half of investors to buy information, but the competitive

equilibrium allocates far fewer since the uninformed investors are free riding on the social benefits

of more informed asset prices.

This analysis builds on the fundamental insight of Hirshleifer (1971), who contrasts the private

and social value of foreknowledge. In the model presented here, all information is foreknowledge,

learning about information that will inevitably be public knowledge later.

5.2 Conclusions

In the aftermath of the recent financial crisis, scrutiny of financial institutions has increased.

The growth in the resources poured into active investment and the surging compensation levels

of financial professionals are used as prima facie evidence that financial markets have become

inefficient, with many doubting that more active management leads to more informative asset

prices.

In a stylized model, I show that investment research and trading are complements, which causes

the quantity of both to increase. Financial markets become more informationally and operationally

efficient. Empirically, this explanation is very successful in explaining the growth in resources

spent in capital markets. Furthermore, it introduces new evidence on the importance of time

horizon. Trading horizons have shortened, and there is a corresponding increase in the short-

horizon information contained in asset prices.

Since shorter trading horizons may not be socially optimal, this result could be interpreted

as justification for Summers and Summers (1989) claim that a non-zero tax on trading might be

welfare enhancing, although this requires more explicit measurement of the benefits that arise from

informative markets and the recognition that the actual implementation of a financial transaction

tax may be impractical (Campbell and Froot, 1994).

The types of dynamic strategies that become feasible with lower transaction costs not only make

short-horizon information more valuable but they can also come closer to dynamically completing
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markets. It is certainly no accident that equity options became widely available in the late 1970s

and early 1980s, precisely when US transaction costs experienced their largest drop. The newfound

exposures made possible by dynamical hedging may have attracted investors to trade on new risks

(Simsek, 2012).

The cost of capital markets has grown enormously over the past few decades. A portion of this

can be attributed to the events of May 1975 that enabled dynamic trading strategies and spurred

an increase in active investing. This opened the door to modern capital markets, with information

and trades moving at ever shorter horizons.
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Appendix

A Deriving investor demand

This section of the appendix derives the demand functions for the model with two trading

periods (T = 2). For each investor, we use their expectations to maximize the utility of final

wealth, as defined in equation (7),

wi = w0 − ki + q0P1 + qi,1 (P2 − P1) + qi,2 (X − P2)− c

2

(
(qi,1 − q0)2 + (qi,2 − qi,1)2

)
.

The first order condition, ∂
∂qi,t

Ei,t [wi] = a
2

∂
∂qi,t

Vari,t [wi], can be used to derive the investor

demand functions. In period 2, the only source of uncertainty is X and we get

q∗i,2 =
Ei,2 [X − P2] + cqi,1
aVari,2 [X] + c

,

which leads to the optimal demand functions presented for each type of investor, as in (5).

Deriving the demand functions for period 1 with multiple horizons requires a fair amount of

algebra. Beginning with the expression for expected wealth,

Ei,1 [wi] = w0−ki+q0P1+qi,1Ei,1 [P2 − P1]+Ei,1 [qi,2 (X − P2)]− c
2

(
(qi,1 − q0)2 + Ei,1

[
(qi,2 − qi,1)2

])
,

we can substitute in period 2’s demand function

Ei,1 [wi] = w0 + q0P1 + qi,1Ei,1 [P2 − P1] + Ei,1

[
Ei,2 [X − P2] + cqi,1
aVari,2 [X] + c

(X − P2)

]
− c

2

(
(qi,1 − q0)2 + Ei,1

[(
Ei,2 [X]− P2 + cq∗i,1
aVari,2 [X] + c

− qi,1
)2
])

Ei,1 [wi] = w0 − ki + q0P1 + qi,1Ei,1 [P2 − P1] +
Ei,1 [X − P2]

aVari,2 [X] + c
cqi,1 + El,1

[
El,2 [X − P2] (X − P2)

aVari,2 [X] + c

]
− c

2
(qi,1 − q0)2 − c

2
El,1

[(
Ei,2 [X − P2]

aVari,2 [X] + c
− aVari,2 [X]

aVari,2 [X] + c
qi,1

)2
]
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Ei,1 [wi] = w0 − ki + q0P1 + qi,1Ei,1 [P2 − P1] +
Ei,1 [X − P2]

aVari,2 [X] + c
cqi,1

+El,1

[
(El,2 [X]− P2) (X − P2)

aVari,2 [X] + c

]
− c

2
(qi,1 − q0)2 − c

2

(
aVari,2 [X]

aVari,2 [X] + c

)2

q2
i,1

− c
2

El,1

[(
Ei,2 [X − P2]

aVari,2 [X] + c

)2
]

+ c
Ei,1 [X − P2] aVari,2 [X]

(aVari,2 [X] + c)2 qi,1

with first derivative

∂

∂qi,1
E [wi] = Ei,1 [P2 − P1] +

cEi,1 [X − P2]

aVari,2 [X] + c
− c (qi,1 − q0)

−c
(

aVari,2 [X]

aVari,2 [X] + c

)2

qi,1 + c
aVari,2 [X] El,1 [X − P2]

(aVari,2 [X] + c)2

so the final expression is

∂

∂qi,1
E [wi] = Ei,1 [P2 − P1] +

(
c

aVari,2 [X] + c
+ c

aVari,2 [X]

(aVari,2 [X] + c)2

)
Ei,1 [X − P2] + cq0

−c

(
1 +

(
aVari,2 [X]

aVari,2 [X] + c

)2
)
qi,1

The optimal portfolio in period one will be the one that solves the first order condition,

q∗i,1 =
Ei,1 [P2 − P1] +

(
c

aVari,2[X]+c + c
aVari,2[X]

(aVari,2[X]+c)2

)
Ei,1 [X − P2] + cq0

a
2q∗i,1

Vari,1 [wi] +

(
1 +

(
aVari,2[X]
aVari,2[X]+c

)2
)
c

.

The expected values for P2 and X are apparent from the assumed linearity in (8) and (9), so

the task at hand is to come up with expressions for a
2q∗i,1

Vari,1 [w3], where the variance term can be

expressed as

Vari,1 [wi] = Vari,1

[
qi,1P2 + qi,2 (X − P2)− c

2
(qi,2 − qi,1)2

]
= Vari,1

[
qi,1P2 + qi,2 (X − P2)− c

2
q2
i,2 + cql,1qi,2

]
= Vari,1

[
qi,1P2 + qi,2 (qi,2 (aVari,2 [X] + c) + (X − Ei,2 [X]))− c

2
q2
i,2

]
= Vari,1

[
qi,1P2 + qi,2 (X − Ei,2 [X]) + q2

i,2

(
aVari,2 [X] +

c

2

)]
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and the remaining calculation requires using the expectations of each investor and calculating the

sensitivity with respect to the first period allocation..

A.1 Long-horizon investors in period 1

For long-horizon investors, the uncertain terms will be:

P2 − EL,1 [P2] = βν2,2ν2,

X − EL,1 [X] = X − El,2 [X] = ε.

The optimal position during the final trading period

qL,2 =
EL,1 [X − P2] + cqL,1

aσ2
ε + c

− βν2ν2

aσ2
ε + c

= EL,1 [qL,2]− βν2
aσ2

ε + c
ν2.

From this, we can calculate the variance

VarL,1 [wL] = VarL,1

[
qL,1βν2ν2 +

(
EL,1 [qL,2]− βν2

aσ2
ε + c

ν2

)
ε+

(
EL,1 [qL,2]− βν2

aσ2
ε + c

ν2

)2 (
aσ2

ε +
c

2

)]

= VarL,1

 qL,1βν2ν2 + EL,2 [qL,2] ε− βν2
aσ2
ε+c

ν2ε

+
(

EL,1 [qL,2]− βν2
aσ2
ε+c

ν2

)2 (
aσ2

ε + c
2

)


= VarL,1


(

c
aσ2
ε+c

qL,1 +
EL,1[X−P2]
aσ2
ε+c

)
ε

+

(
qL,1

(
aσ2
ε

aσ2
ε+c

)2
− 2EL,1 [X − P2]

aσ2
ε+ c

2

(aσ2
ε+c)2

)
βν2ν2

− βν2
aσ2
ε+c

ν2ε+
aσ2
ε+ c

2

(aσ2
ε+c)2

β2
ν2ν

2
2


and using the normality and independence of ε and ν2,

Var [wL] = Var[aν + bε+ cν2 + dνε]

= a2σ2
ν + b2σ2

ε + 2c2σ4
ν + d2σ2

νσ
2
ε
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we can write

VarL,1 [wL] =

(
c

aσ2
ε + c

qi,1 +
EL,1 [X − P2]

aσ2
ε + c

)2

σ2
ε

+

(
qL,1

(
aσ2

ε

aσ2
ε + c

)2

− EL,1 [X − P2]
2aσ2

ε + c

(aσ2
ε + c)2

)2

β2
ν2σ

2
ν

+

{
βν2

aσ2
ε + c

}2

σ2
νσ

2
ε + 2

{
aσ2

ε + c
2

(aσ2
ε + c)2

}2

β4
ν2,2σ

4
2.

To calculate the demand function, we need to evaluate the first derivative

∂

∂q1,l
Vari,1 [wi] = 2

c

aσ2
ε + c

(
c

aσ2
ε + c

qi,1 +
EL,1 [X − P2]

aσ2
ε + c

)
σ2
ε

+2

(
aσ2

ε

aσ2
ε + c

)2
(
qi,1

(
aσ2

ε

aσ2
ε + c

)2

− EL,1 [X − P2]
2aσ2

ε + c

(aσ2
ε + c)2

)
β2
ν2σ

2
ν

and calculate the term

a

2

∂VarL,1 [wL]

∂q1,l
= a

((
aσ2

ε

aσ2
ε + c

)4

β2
ν2σ

2
ν +

(
c

aσ2
ε + c

)2

σ2
ε

)
qi,1

−a

((
2aσ2

ε + c
)
a2σ4

εβ
2
ν2σ

2
ν

(aσ2
ε + c)4 − cσ2

ε

(aσ2
ε + c)2

)
EL,2 [X − P2]

The optimal portfolio for the long-term speculator is then

q∗L,1 =

EL,1 [P2 − P1] +

{
c

aσ2
ε+c

+ a
(2aσ2

ε+c)β2
ν2,2

σ2
νa

2σ4
ε

(aσ2
ε+c)4

}
EL,1 [X − P2] + cq0

a

{(
c

aσ2
ε+c

)2
σ2
ε +

(
aσ2
ε

aσ2
ε+c

)4
β2
ν2,2

σ2
ν

}
+ c

(
1−

(
aσ2
ε

aσ2
ε+c

)2
)

which can be written as in equation (17)

q∗L,1 =
EL,1 [P2 − P1] + ΓlEL,1 [X − P2] + cq0

aΩ + c

(
1−

(
aσ2
ε

aσ2
ε+c

)2
)

=
(1− Γ) EL,1 [P2 − P1] + ΓEL,1 [X − P1] + cq0

aΩ + c

(
1−

(
aσ2
ε

aσ2
ε+c

)2
)
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The variance term, Ω is a linear combination of the uncertainty in next period’s price (σ2
ν) and

uncertainty in the final payout (σ2
ε)

Ω =

(
c

aσ2
ε + c

)2

σ2
ε︸ ︷︷ ︸

variance of X

+

(
aσ2

ε

aσ2
ε + c

)4

β2
ν2,2σ

2
ν︸ ︷︷ ︸

variance in P2

.

The sensitivity to next period’s expected return is

Γ =
c

aσ2
ε + c︸ ︷︷ ︸

return next period

+ a

(
2aσ2

ε + c
)
a2σ4

ε

(aσ2
ε + c)4 β2

ν2,2σ
2
ν︸ ︷︷ ︸

prefer to avoid uncertain ν2

.

The weight Γ that the investor tilts toward the long-horizon return will always be positive, and

its magnitude will increase with transaction costs. The relationship with transaction costs comes

from the investor recognizing positions taken now will persist later. Additionally, there is some

uncertainty in the price next period, so investors have an incentive to lock in P1 now rather than

pay an uncertain P2.

A.2 Short-horizon investors in period 1

For the short-run investors, the uncertain terms will be

P2 − EN,1 [P2] = β4eS + βν2ν2

and

X − Es,1 [X] = eS + ε,

where

eS = (θ2 − ES,1 [θ2]) .
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The optimal portfolio in the final trading period can then be expressed as

qS,2 =
ES,2 [X − P2] + cqS,1

aσ2
ε + c

=
ES,1 [X − P2] + cqS,1

aσ2
ε + c

+
ES,2 [X − P2]− ES,1 [X − P2]

aσ2
ε + c

= ES,1 [qS,2] +
eS (1− β4)

aσ2
ε + c

− βν2ν2

aσ2
ε + c

.

So we can calculate the variance as

VarS,1 [wS ] = VarS,1

[
qS,1P2 + qS,2 (X − ES,2 [X]) + q2

S,2

(
aσ2

ε +
c

2

)]
= VarS,1

 qS,1 (β4eS + βν2ν2) +
(

ES,1 [qS,2] + eS(1−β4)
aσ2
ε+c

− βν2ν2
aσ2
ε+c

)
ε

+
(

ES,1 [qS,2] + eS(1−β4)
aσ2
ε+c

− βν2ν2
aσ2
ε+c

)2 (
aσ2

ε + c
2

)


VarS,1 [wS ] = VarS,1



(
qS,1 − 2

(1−β4)ES,1[qS,2](aσ2
ε+ c

2)
aσ2
ε+c

)
β4eS

+

(
qS,1 − 2

ES,1[qS,2](aσ2
ε+ c

2)
aσ2
ε+c

)
βν2ν2 + ES,1 [qS,2] ε

+
(
eS(1−β4)
aσ2
ε+c

− βν2ν2
aσ2
ε+c

)2 (
aσ2

ε + c
2

)
+
(
eS(1−β4)
aσ2
ε+c

− βν2ν2
aσ2
ε+c

)
ε



So the variance is

VarS,1 [wS ] =

(
qS,1 − 2

(1− β4) ES,1 [qS,2]
(
aσ2

ε + c
2

)
aσ2

ε + c

)2

β2
4σ

2
S,1

+

(
qS,1 − 2

ES,1 [qS,2]
(
aσ2

ε + c
2

)
aσ2

ε + c

)2

β2
ν2σ

2
ν

+ (ES,1 [qS,2])2 σ2
ε

+VarS,1

[(
eS (1− β4)

aσ2
ε + c

− βν2ν2

aσ2
ε + c

)2 (
aσ2

ε +
c

2

)
+

(
eS (1− β4)

aσ2
ε + c

− βν2ν2

aσ2
ε + c

)
ε

]
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and we can substitute in ES,1 [qS,2] =
ES,1[X−P2]+cqS,1

aσ2
ε+c

get

VarS,1 [wS ] =

(
qS,1

(
a2σ4

ε − β4

(
2acσ2

ε + c2
)

(aσ2
ε + c)2

)
−

(1− β4)
(
2aσ2

ε + c
)

(aσ2
ε + c)2 ES,1 [X − P2]

)2

β2
4σ

2
S,1

+

(
qS,1

a2σ4
ε

(aσ2
ε + c)2 −

2aσ2
ε + c

(aσ2
ε + c)2 ES,1 [X − P2]

)2

β2
ν2σ

2
ν

+

(
qS,1

c

aσ2
ε + c

+
ES,1 [X − P2]

aσ2
ε + c

)2

σ2
ε

+VarS,1

[(
eS (1− β4)

aσ2
ε + c

− βν2ν2

aσ2
ε + c

)2 (
aσ2

ε +
c

2

)
+

(
eS (1− β4)

aσ2
ε + c

− βν2ν2

aσ2
ε + c

)
ε

]

with first derivative

∂VarS,1 [wS ]

∂qS,1
= 2qS,1

{(
a2σ4

ε

(aσ2
ε + c)2

)2

β2
ν2σ

2
ν +

(
c

aσ2
ε + c

)2

σ2
ε

}

+2qS,1


(
a2σ4

ε − β4

(
2acσ2

ε + c2
)

(aσ2
ε + c)2

)2

β2
4σ

2
S,1


−2ES,1 [X − P2]

(
+
a2σ4

ε

(
2aσ2

ε + c
)

(aσ2
ε + c)4 β2

ν2σ
2
ν −

cσ2
ε

(aσ2
ε + c)2

)

−2ES,1 [X − P2]

((
a2σ4

ε − β4

(
2acσ2

ε + c2
))

(1− β4)
(
2aσ2

ε + c
)

(aσ2
ε + c)4 β2

4σ
2
S,1

)

The optimal portfolio is then

q∗S,1 =

ES,1 [P2 − P1] +

(
c

aσ2
ε+c

+
(2aσ2

ε+c)(a2σ4
εβ

2
ν2
σ2
ν+(a2σ4

ε−β4(2acσ2
ε+c2))(1−β4)β2

4σ
2
S,1)

(aσ2
ε+c)4

)
ES,1 [X − P2] + cq0

a

((
c

aσ2
ε+c

)2
σ2
ε +

(a2σ4
ε−β4(2acσ2

ε+c2))2β2
4σ

2
S,1+a4σ8

εβ
2
ν2
σ2
ν

(aσ2
ε+c)4

)
+

(
1 +

(
aσ2
ε

aσ2
ε+c

)2
)
c

which can be expressed in a form analogous to the long-run demand function in equation (17) by

naming the short-horizon parameters, Γs and Ωs,

q∗S,1 =
(1− ΓS) ES,1 [P2 − P1] + ΓSES,1 [X − P1] + cq0

aΩS + c

(
1 +

(
aσ2
ε

aσ2
ε+c

)2
) . (19)

The intuition and form are nearly identical, with the short-horizon investors tilting slightly more
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toward the long-run return, ES,1 [X − P2], due to their uncertainty about θ2,

ΓS = Γ + a
(1− β4)

(
a2σ4

ε − β4

(
2acσ2

ε + c2
))

(aσ2
ε + c)4 β2

4σ
2
e1︸ ︷︷ ︸

prefer to avoid uncertain e1

. (20)

A.3 Uninformed investors in period 1

The uninformed investors have the highest degree of uncertainty. In period 1, this is summa-

rized by the uncertain terms:

X − EN,2 [X] = e1 + e2 + ε

where the errors in expectations in the final period are expressed as

e1 = (θ1 − EN,2 [θ1])

e2 = (θ2 − EN,2 [θ2]) .

The additional, orthogonal error in the first period expectation is

∆e1 = (θ1 − EN,1 [θ1])− (θ1 − EN,2 [θ1])

∆e2 = (θ2 − EN,1 [θ2])− (θ2 − EN,2 [θ2])

so that

P2 − EN,1 [P2] = β3 (e1 + ∆e1) + β4 (e2 + ∆e2) + βν2ν2

and

X − EN,1 [X] = (e1 + ∆e1) + (e2 + ∆e2) + ε.
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The optimal portfolio in the final trading period can then be expressed as

qN,2 =
EN,2 [X − P2] + cqN,1

aVarN,2 [X] + c

=
EN,1 [X − P2] + cqN,1

aVarN,2 [X] + c
+

EN,2 [X − P2]− EN,1 [X − P2]

aVarN,2 [X] + c

=
EN,1 [X − P2] + cqN,1

aVarN,2 [X] + c
+

EN,2 [X]− EN,1 [X]− P2 − EN,1 [P2]

aVarN,2 [X] + c

= EN,1 [qN,2] +
∆e1 + ∆e2 − β3 (e1 + ∆e1)− β4 (e2 + ∆e2)− βν2ν2

aVarN,2 [X] + c

= EN,1 [qN,2] +
∆e1 (1− β3) + ∆e2 (1− β4)− β3e1 − β4e2 − βν2ν2

aVarN,2 [X] + c
.

The uncertainty from the perspective of the investors who acquire no information will be

VarN,1 [wN ] = VarN,1

[
qN,1P2 + qN,2 (X − EN,2 [X]) + q2

N,2

(
aVarN,2 [X] +

c

2

)]

= VarN,1


qN,1 (β3 (e1 + ∆e1) + β4 (e2 + ∆e2) + βν2ν2)

+
(

EN,1 [qN,2] +
∆e1(1−β3)+∆e2(1−β4)−β3e1−β4e2−βν2ν2

aVarN,2[X]+c

)
(e1 + e2 + ε)

+
(

EN,1 [qN,2] +
∆e1(1−β3)+∆e2(1−β4)−β3e1−β4e2−βν2ν2

aVarN,2[X]+c

)2 (
aVarN,2 [X] + c

2

)


VarN,1 [wN ] =

{
qN,1β3 + EN,1 [qN,2]− 2β3EN,1 [qN,2]

aVarN,2 [X] + c
2

aVarN,2 [X] + c

}2

σ2
e1

+

{
qN,1β4 + EN,1 [qN,2]− 2β4EN,1 [qN,2]

aVarN,2 [X] + c
2

aVarN,2 [X] + c

}2

σ2
e2

+

{
qN,1β3 + (1− β3) 2EN,1 [qN,2]

aVarN,2 [X] + c
2

aVarN,2 [X] + c

}2

σ2
∆e1

+

{
qN,1β4 + (1− β4) 2EN,1 [qN,2]

aVarN,2 [X] + c
2

aVarN,2 [X] + c

}2

σ2
∆e2

+

{
qN,1 − 2EN,1 [qN,2]

aVarN,2 [X] + c
2

aVarN,2 [X] + c

}2

β2
ν2σ

2
ν2

+ {EN,1 [qN,2]}2 σ2
ε

+ {the terms without qN,1}
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which we can rewrite to focus on qN,1 as

VarN,1 [wN ] =


qN,1

(
c

aVarN,2[X]+c + β3

(
aVarN,2[X]
aVarN,2[X]+c

)2
)

+EN,1 [X − P2]

(
aVarN,2[X]+c−2β3(aVarN,2[X]+ c

2)
(aVarN,2[X]+c)

2

)


2

σ2
e1

+


qN,1

(
c

aVarN,2[X]+c + β4

(
aVarN,2[X]
aVarN,2[X]+c

)2
)

+EN,1 [X − P2]

(
aVarN,2[X]+c−2β4(aVarN,2[X]+ c

2)
(aVarN,2[X]+c)

2

)


2

σ2
e2

+


qN,1

(
1− β3

(
aVarN,2[X]
aVarN,2[X]+c

)2
)

+EN,1 [X − P2]

(
(1−β3)(2aVarN,2[X]+c)

(aVarN,2[X]+c)
2

)


2

σ2
∆e1

+


qN,1

(
1− β4

(
aVarN,2[X]
aVarN,2[X]+c

)2
)

+EN,1 [X − P2]

(
(1−β4)(2aVarN,2[X]+c)

(aVarN,2[X]+c)
2

)


2

σ2
∆e2

+

{
qN,1

(
1−

(
aVarN,2 [X]

aVarN,2 [X] + c

)2
)
− EN,1 [X − P2]

(
2aVarN,2 [X] + c

(aVarN,2 [X] + c)2

)}2

β2
ν2σ

2
ν2

+

{
qN,1

c

aVarN,2 [X] + c
+

EN,1 [X − P2]

aVarN,2 [X] + c

}2

σ2
ε

+ {the terms without qN,1}

and taking the first derivative yields the comon form

q∗N,1 =
(1− ΓN ) EN,1 [P2 − P1] + ΓNEN,1 [X − P1] + cq0

aΩN + c

(
1 +

(
aσ2
ε

aσ2
ε+c

)2
)

where

ΩN =

(
c

aVarN,2[X]+c + β3

(
aVarN,2[X]
aVarN,2[X]+c

)2
)2

σ2
e1 +

(
c

aVarN,2[X]+c + β4

(
aVarN,2[X]
aVarN,2[X]+c

)2
)2

σ2
e2

+

(
1− β3

(
aVarN,2[X]
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)2
)2

σ2
∆e1

+

(
1− β4

(
aVarN,2[X]
aVarN,2[X]+c

)2
)2

σ2
∆e2

+

(
1−

(
aVarN,2[X]
aVarN,2[X]+c

)2
)2

β2
ν2σ

2
ν2 +

{
c

aVarN,2[X]+c

}2
σ2
ε
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and

ΓN =
c

aVarN,2 [X] + c
+ c

aVarN,2 [X]

(aVarN,2 [X] + c)2

+a


(
c (aVarN,2 [X] + c) + β3 (aVarN,2 [X])2

)
(aVarN,2 [X] + c− β3 (2aVarN,2 [X] + c))

(aVarN,2 [X] + c)4

σ2
e1

+a


(
c (aVarN,2 [X] + c) + β4 (aVarN,2 [X])2

)
(aVarN,2 [X] + c− β4 (2aVarN,2 [X] + c))
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σ2
e2

+a
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1− β3

(
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1− β4
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)(
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)}
σ2

∆e2

−a

{(
1−

(
aVarN,2 [X]

aVarN,2 [X] + c

)2
)(

2aVarN,2 [X] + c

(aVarN,2 [X] + c)2

)}
β2
ν2σ

2
ν2

+a

{
c

(aVarN,2 [X] + c)2

}2

σ2
ε

B Confirming the linearity assumption

In equations (8) and (9), it was convenient to assume the market price to be a linear function

of the state variables. Using the derived investor demand functions, we can verify this is true using

the market clearing conditions.

In period 1, the market clears when

Q0 = λNqN,1 + λSqS,1 + λLqL,1 +
ν1

aσ2
ε + c

.

The demand functions for the short-horizon and long-horizon investors are both linear in E[X] and

hence linear in the state variables, so substituting them into the market clearing condition shows

the price to be linear in the state variables. The expectations of the risky payout will all be linear in
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P1, which can be seen from substituting in the demand functions to the market clearing condition

P1 ∝

λS
 (1− ΓS)β3 + ΓS

aΩS + c

(
1 +

(
aσ2
ε

aσ2
ε+c

)2
)
+ λL

 (1− Γ)β3θ1 + Γθ1

aΩ + c

(
1−

(
aσ2
ε

aσ2
ε+c

)2
)

 θ1

λL
 (1− Γ)β4 + Γ

aΩ + c

(
1−

(
aσ2
ε

aσ2
ε+c

)2
)

 θ2

+

{
1

aσ2
ε + c

}
ν1

This confirms (8).

Similarly, in period 2 the market clearing condition shows that

P2 ∝
λS + λL
aσ2

ε + c
(θ1 + θ2) +

{
1

aσ2
ε + c

}
ν2,

which confirms (9).
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Figure 1: Capital Market Spending and Compensation

The upper plot shows the share of GDP attributed to the capital markets sector using the gross
value added measure, and the lower plot shows the ratio of average employee compensation in the
capital markets sector relative to the US private industry average. The primary source for these
calculations is the industry accounts data published by the US Bureau of Economic Analysis as of
March 2011. Capital markets-related industries are described in Table 1. Data prior to 1947 comes
from Philippon (2012).
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Figure 2: Contrasting Banking and Credit vs. Capital Market Activities

The upper plot contrasts the cost of banking and credit activity with the cost of capital markets
using gross value added, and the lower plot shows the respective employee compensation ratios
relative to the US private industry average. The primary source for these calculations is the
industry accounts data published by the US Bureau of Economic Analysis as of March 2011. The
classification to industry groups is shown in Table 1. Data prior to 1947 comes from Philippon
(2012).
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Figure 3: Intuition behind model equilibrium

The plots below correspond to the model presented in the paper in the one-period setting, T = 1.
The model parameters are: Q0 = 1, X̄ = 100, σ2

ε = σ2
θ = 102, σ2

ν = 22, a = 0.1, c = 10, and k = 1.
For illustration, the investment supply is allowed to be elastic in the short-run (∆Q = b(P −E[P ])),
with linear supply parameter b = 0.2. The left axis plots the expected utility for the informed
speculators and the uninformed passive investors. The right axis plots how the distribution of the
market price, P , changes with respect to the quantity of informed speculators.
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Figure 4: Relationship between transaction costs and active investing

The plots below graph the effect of transaction costs (c) on the equilibrium quantity of active
investing and capital market spending. To keep the illustration simple, the one-period setting,
T = 1 of the model is used with parameters: Q0 = 1, X̄ = 100, σ2

ε = σ2
θ = 102, σ2

ν = 22,
a = 0.1, and k = 1. For illustration, the investment supply is allowed to be elastic in the short-run
(∆Q = b(P − E[P ])), with linear supply parameter b = 0.2. The left axis plots the equilibrium
quantity of informed speculators (λ) as a function of the exogenous transaction costs parameter, c.
The right axis plots the quantity of resources spent on active management (λ× k) as well as total
capital market spending, which includes trading costs.
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Figure 5: NYSE Commission Schedule, 1956

The image below shows the New York Stock Exchange minimum commission schedule for 1956, as
reported on page 7 of the NYSE Fact Book for 1965.
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Figure 6: Transaction Cost Time Series

The figure below plots the composite transaction cost measure, constructed as described in section
3.1, plotted alongside three other comparison series. The orange series shows the cost of trading
a stock with a nominal share price of $30 according to the published NYSE commission schedule,
the red series shows the decrease in commission costs as measured by the Securities and Exchange
Commission in their analyses of the effects of commission deregulation, and the green line plots
the average equity commission charge collected in a survey of institutional investors by Greenwich
Associates, a financial consulting firm.
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Figure 7: Round Trip Trading Costs, May 1974

The figure below plots the commission schedule in effect in May of 1974, one year before deregu-
lation, with the red line showing the explicit commission charge and the black line illustrating the
additional effect of paying half of the bid-ask spread, commonly 1/4 of a dollar. These are plotted
on top of a histogram representing the distribution of nominal share prices at the time, as reported
by CRSP.
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Figure 8: Predicting the cost of capital markets using the cost of transacting

The figure below plots in red the percentage of national income consumed by capital markets related
activity using a GDP value-added measure divided by private GDP calculated using data from the
Bureau of Economic Analysis. The dotted line shows the fit of a time series regression using the
composite commission time series and a linear time trend.
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Figure 9: Rolling Regression Coefficient and Moving Average, 1965-2010

The two axes plot the results of the rolling regressions described in section 4.3. The top axis plots
the estimated regression coefficients and the lower axis plots the square root of the mean squared
error (RMSE) and the R2 values.
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Figure 10: Welfare illustration in the case of inelastic investment supply (short-horizon)
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Figure 11: Welfare illustration in the case of elastic investment supply (long-horizon)
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Table 1: Financial sector components in national income accounts

This table shows the components of the financial sector and the associated NAICS codes as used
by the US Bureau of Economic Analysis in their national income accounts. The grouping of the
components has not always been historically consistent. The highlighted industries are those which
will be termed the capital markets sector and are the primary focus of this paper.

Finance, Insurance, and Real Estate
Banking and Credit (521 & 522)

Banking
Credit agencies other than banks

Capital Markets (523 & 525)
Security and commodity brokers
Funds, trusts, and other financial vehicles
Holding and other investment offices

Insurance (524)
Insurance carriers
Insurance agents, brokers, and service

Real Estate and Leasing (531, 532, 533)
Real Estate

Rental and leasing services and lessors of intangible assets
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Table 2: Time series summary statistics and correlations

This table shows summary statistics for annual data on: the average commission cost of transacting
stocks in the United States (tcost) constructed as described in section 3.1; the percentage of national
income consumed by capital markets related activity using a GDP value-added measure divided by
private GDP calculated using data from the Bureau of Economic Analysis (capmkt%); the ratio of
the average salary for employees in capital markets related industries relative to the average salary
across all private-sector employees using data from the Bureau of Economic Analysis (comp ratio);
and the annual turnover in US equities measured by dividing annual volume by shares outstanding
as reported in CRSP. Annual observations are used over the period 1927-2010 to calculate the
mean, standard deviation and various percentiles in the upper panel. Correlations are displayed in
the lower panel.

1927-2010
mean std. 1 %ile 50 %ile 99 %ile

tcost (bps) 71.1 43.6 3.6 78.4 152.0
capmkt% (bps) 78.8 65.7 8.5 43.1 221.6

comp ratio 2.09 0.77 1.20 1.72 3.92
turnover 55.7 58.9 7.3 30.4 277.1

Correlation
tcost capmkt comp turnover

tcost (bps) 1.00 -0.81 -0.83 -0.76
capmkt (bps) -0.81 1.00 0.90 0.72

comp ratio -0.83 0.90 1.00 0.87
turnover -0.76 0.72 0.87 1.00
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Table 3: Time series regressions of first differences

This table shows the results of regressing changes in the income share of capital markets (∆capmkt),
capital market compensation (∆comp), and equity turnover by volume (∆turnover) on changes in
the commission cost of stock transactions (∆tcost) with up to four lags. Newey-West adjusted
t-statistics, with four lags, are reported in parentheses. Statistical significance is noted with: ***
p < 0.01, ** p < 0.05, * p < 0.1.

∆capmkt ∆comp ∆turnover
(1) (2) (3)

∆tcost -3.46 4.33 0.62
(4.93) (8.45) (6.34)

L(∆tcost) -3.01 3.42 -4.24
(6.20) (9.77) (5.55)

L2(∆tcost) -12.98* 2.62 -2.95
(7.29) (11.67) (5.64)

L3(∆tcost) -2.41 -18.11** -9.16**
(4.77) (7.07) (4.13)

L4(∆tcost) -6.06 -7.20 -7.34
(6.56) (7.95) (5.86)

Constant 1.92 2.38 2.16
(1.17) (1.56) (1.72)

Observations 80 80 80
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Table 4: Summary Statistics for Panel Data Analysis

The summary statistics below are for the quarterly panel data collected for the 1,000 firms in the
annual universe being analyzed. The universe is reset each year, taking the 1,000 largest firms by
market cap. The first panel cover the full sample period, while the lower panel covers the 5-year
window before fixed exchange regime was ended on May 1, 1975 up until 5-years after May 1,
1977—the date at which none of the collected series overlap with the fixed-rate commission regime.

mean std. 1 %ile 50 %ile 99 %ile

1966 - 2010

∆xt -0.01 2.08 -9.88 0.05 8.83
price 104.10 23.56 6.24 32.50 132.60

turnover 2.36 3.20 0.10 1.39 14.58
rL 0.124 0.446 -0.835 0.082 1.526
rS 0.013 0.216 -0.577 0.011 0.598
rA 0.006 0.156 -0.411 0.004 0.434

(N = 134,128)

1970-1982

∆xt 0.02 1.97 -7.60 0.07 6.90
price 32.17 22.26 6.75 27.38 111.80

turnover 0.81 0.87 0.05 0.58 4.19
rL 0.102 0.388 -0.785 0.075 1.245
rS 0.017 0.193 -0.485 0.012 0.546
rA 0.007 0.139 -0.336 0.004 0.394

(N = 36,174)
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Table 5: Base panel regression with time trend

The regression estimates below are the result of panel regressions of earnings news (∆x defined
in section 4 of the paper) on past log returns, log returns interacted with a time trend. The
regression also includes a constant term and constant trend variable, but the coefficients are not
reported. Industry-clustered, heteroskedasticity robust standard errors are in parentheses below
each estimated coefficient. Statistical significance is noted with: *** p < 0.01, ** p < 0.05, *
p < 0.1.

(1) (2) (3)

rL 0.033 -0.001 0.029
(0.028) (0.026) (0.053)

rL × trend 0.0000
(0.0020)

rS 0.667*** 0.712*** 0.315***
(0.078) (0.073) (0.100)

rS × trend 0.0110***
(0.0026)

rA 0.720*** 0.816*** 1.380***
(0.080) (0.073) (0.145)

rA × trend -0.0208***
(0.0056)

Fixed Effects
# firms 3,061 3,061
# industries 66
# quarters 175

Observations 134,128 134,128 134,128
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Table 6: Testing the May Day effect in the time series

The regression estimates below are the result of panel regressions of earnings news (∆x defined
in section 4 of the paper) on past log returns and log returns interacted with a post-1975 dummy
variable. Coefficients for constant term and constant post-1975 dummy are estimated but not
reported. Industry-clustered, heteroskedasticity-robust standard errors are reported in parentheses.
Statistical significance is noted with: *** p < 0.01, ** p < 0.05, * p < 0.1.

full-sample 10 yr window 5 yr window 3 yr window
(1) (2) (3) (4)

rL 0.010 0.010 0.016 0.069
(0.035) (0.035) (0.051) (0.074)

rL × post75 0.031 0.078 -0.000 -0.137
(0.043) (0.055) (0.062) (0.105)

rS 0.234*** 0.235*** 0.255*** 0.375**
(0.066) (0.066) (0.086) (0.153)

rS × post75 0.513*** 0.560*** 0.469** 0.407
(0.119) (0.180) (0.208) (0.319)

rA 0.811*** 0.812*** 0.933*** 0.870***
(0.128) (0.129) (0.178) (0.251)

rA × post75 -0.124 0.514*** 0.704** 1.077**
(0.173) (0.191) (0.287) (0.496)

Fixed Effects
# firms 3,058 1,653 1,205 1,059

Observations 128,114 55,184 30,160 18,070
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Table 7: Testing May Day effect in the cross-section

Coefficients for constant term and unique permutations of constant dummies are not reported.
Industry-clustered, heteroskedasticity-robust standard errors are reported in parentheses. Statisti-
cal significance is noted with: *** p < 0.01, ** p < 0.05, * p < 0.1.

10 yr window 5 yr window 3 yr window
(1) (2) (3)

Long-horizon return

RLH . . . -0.014 0.004 0.015
(0.020) (0.029) (0.042)

×lowP 0.025 -0.009 -0.023
(0.120) (0.137) (0.180)

×midP -0.040 -0.087 -0.164
(0.038) (0.056) (0.111)

×lowP × post75 0.137 -0.091 -0.193
(0.191) (0.201) (0.261)

×midP × post75 0.125*** 0.0639 0.113
(0.047) (0.062) (0.135)

×highP × post75 -0.013 -0.040 -0.0659
(0.191) (0.287) (0.496)

Short-horizon return

RSH . . . 0.186*** 0.225*** 0.313***
(0.040) (0.058) (0.089)

×lowP -0.0217 -0.027 -0.094
(0.225) (0.244) (0.325)

×midP 0.131 -0.0375 -0.025
(0.146) (0.168) (0.209)

×lowP × post75 2.201*** 2.056*** 1.939***
(0.416) (0.520) (0.675)

×midP × post75 0.292 0.368 0.067
(0.241) (0.248) (0.292)

×highP × post75 0.164* 0.144* 0.170
(0.082) (0.084) (0.121)

Fixed effects
# industries 64 61 61

Observations 61,198 36,174 24,084
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